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Diverse organisms, from insects to humans, actively seek out
sensory information that best informs goal-directed actions.
Efficient active sensing requires congruity between sensor prop-
erties and motor strategies, as typically honed through evolution.
However, it has been difficult to study whether active sensing
strategies are also modified with experience. Here, we used a
sensory brain–machine interface paradigm, permitting both free
behavior and experimental manipulation of sensory feedback, to
study learning of active sensing strategies. Rats performed a
searching task in a water maze in which the only task-relevant
sensory feedback was provided by intracortical microstimulation
(ICMS) encoding egocentric bearing to the hidden goal location.
The rats learned to use the artificial goal direction sense to find the
platform with the same proficiency as natural vision. Manipulation
of the acuity of the ICMS feedback revealed distinct search strat-
egy adaptations. Using an optimization model, the different strat-
egies were found to minimize the effort required to extract the
most salient task-relevant information. The results demonstrate
that animals can adjust motor strategies to match novel sensor
properties for efficient goal-directed behavior.
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Perception is an active process. Animal behaviors are replete
with examples. Active sensing is not merely the exploratory

movement of sensors, but instead a purposeful motor strategy to
extract task-relevant sensory information, given the characteris-
tics and constraints of the sensors (1). Common examples of
active sensing include echolocation in bats (2), electrolocation in
fish (3), vibrissal touch in rodents (4), and visual search in hu-
mans (5). The observed strategies are task dependent (6) and
accompanied by tailored neural processing of the sensory signals
(7, 8).
However, little is known about how active sensing strategies

may be modified through experience (1). The acquisition of new
motor skills is known to be accompanied by reciprocal plasticity
in sensory and motor areas and changes in sensory perception
(9). Modified strategies may also arise after neurological con-
ditions that impair sensory or motor capabilities (10), and in
subsequent use of assistive technologies. For example, such
learning could be important for users of neuroprostheses that
replace lesioned sensorimotor pathways with artificial ones
through a brain–machine interface (BMI) (11, 12). Studying
learning in this domain could reveal both the capacity for
achieving new motor strategies to optimally extract sensory in-
formation and the cost functions that drive the process.
How do we effectively study learning of active sensing strate-

gies? First, we require a closed-loop paradigm whereby task-
relevant sensory information is experimentally manipulated
during free behavior (13). Second, the paradigm should be
parametrically controlled to show that different sensor proper-
ties result in different motor strategies (14). Finally, theoretical
optimal behaviors for the different sensor properties should
ideally be known to compare to the observed behaviors (14).
Virtual reality paradigms provide an option to meet these objectives,

as demonstrated recently in weakly electric fish (15). However, in
general, virtual reality is difficult to implement in unrestrained ani-
mals (16). As an alternative, we propose that the same BMI tech-
nology developed for clinical purposes can provide an experimental
platform to study learning during free behavior.
Motor BMIs, which decode neural activity to control an ef-

fector, have previously been used to study fundamental aspects
of procedural learning (17–19). The closed-loop paradigm in-
volves experimentally manipulating a learned decoder (SI Ap-
pendix, Fig. S1A) and observing how the resulting task errors,
perceived naturally by the subject, drive improved performance
and reorganization of the decoded neural network (20, 21). For
learning active sensing strategies, we propose an analogous
paradigm using sensory BMIs, which encode sensory information
with direct neural stimulation (11). In this closed-loop paradigm,
the encoder provides task-critical sensory information that is
dependent on natural movements but that is not available to the
natural senses. The encoder is then parametrically manipulated,
for example, by specifying a new encoding function or brain site,
and the resulting performance and behavioral strategies are
assessed (SI Appendix, Fig. S1B).
Here, we used this experimental paradigm to study active

sensing strategies in freely behaving rats performing open-field
navigation to a hidden goal location. The closed-loop sensory
BMI provided the only task-relevant information, egocentric
bearing to the goal, with varying degrees of acuity. We found that
the rats learned to use the artificial feedback to reliably find the
goal, using distinct searching strategies that optimally identified
the task-relevant information.

Significance

Our sensory experience is governed by sensor properties (e.g.,
eye photoreceptors) and corresponding motor strategies to
sample the environment (e.g., eye movements). With injury,
aging, or new task constraints, existing strategies can become
incompatible with perceptual demands. Using a brain–machine
interface paradigm in rats, we studied how motor strategies
are adapted to new sensory inputs to accomplish a difficult
searching task. We show that the strategies can be dynamically
regulated through experience to optimally extract task-
relevant sensory information.
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Results
Encoding Goal Direction with ICMS. We performed a sensory BMI
experiment in which task-relevant information was parametrically
controlled through microstimulation of primary sensory areas.
Adult rats (n = 12) were implanted chronically with a pair of
cortical bipolar stimulating electrodes. During daily testing ses-
sions, the electrodes were connected to a custom wireless neural
stimulator (22) housed in a harness worn by the rat (Fig. 1A). The
rats’ task was derived from a classic behavioral paradigm, the
Morris water maze (23), in which the rat was placed at the center
of a pool and had to swim to a hidden, submerged platform to
escape (Fig. 1B). Unlike the classic task, in our experiment, the
platform was moved to a random location on each trial to disso-
ciate visual cues from the platform location. The only reliable cues
of platform location were the percepts evoked by swim path-
dependent intracortical microstimulation (ICMS). The swim
path was monitored by an overhead video camera at 12 frames/s.
On each frame, the goal direction angle, θ, was computed as the
deviation of the rat’s current heading from the platform direction
(Fig. 1C). A wireless transmitter updated the ICMS as a function
of this angle. The encoding function was parameterized by a
preferred direction (μ) and a tuning width (σ). When θ − μ ≤ σ,
the wireless stimulator delivered charge-balanced current-
controlled pulses at suprathreshold intensity and 100-Hz pulse
frequency. When θ − μ > σ, no stimulation was delivered (Fig.
1C). The step, rather than smooth, encoding function ensured that
σ precisely defined the spatial limits of the perceived artificial
feedback. Thus, σ controlled the acuity of the encoded goal di-
rection information. The preferred direction parameter, μ, con-
trolled the alignment of the encoded and true goal directions.

Learning with High-Acuity ICMS Feedback. Experiments began by
providing a local visual cue of the platform location to establish
the baseline performance. Trial performance was quantified by
the ratio of the actual swim path length to the shortest path
length between the start and platform locations. For the 7 rats
that completed cue training (Methods), performance with the
local visual cue was stable across the 2 to 3 sessions preceding
introduction of ICMS (1-way ANOVA, F[2,148] = 0.6; P =
0.549). After the local cue was removed, the rats performed the
task using only ICMS feedback. In the first pair of rats, ICMS
was delivered to primary somatosensory cortex (S1) in a series of

trial blocks with decreasing σ values and μ = 0°. Both rats learned
to use the encoded information over the course of 100 to 200
trials, particularly for σ = 45° and 15° (Fig. 2A). Example pre- and
postlearning trials are shown in Movies S1 and S2. The overlaid
graphics in the videos indicate the conditions for stimulation on
each frame (see also Fig. 2 A, Top). Stimulation was delivered
when the heading vector was within the green circular sector, the
area of which was defined by σ, and the orientation of which was
defined by μ. In the final 30 trials of the σ = 15° block, the mean
path length ratio was not significantly different from in the local
visual cue block (rat Ge: t[46] = 1.13 [P = 0.263]; rat Fr: t[62] =
0.38 [P = 0.700]). Thus, when using a relatively narrow encoding
function aligned with the true goal direction, the rats learned to
locate the hidden platform using ICMS with the same proficiency
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Fig. 1. Experimental paradigm. (A) Illustration of an instrumented subject.
(B) Illustration of the water maze task guided by ICMS feedback. (C) The
ICMS feedback was a step function of the goal direction angle (θ).
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Fig. 2. Learning with high-acuity ICMS feedback. (A) Learning curves for
rats Ge (Top) and Fr (Bottom), shown as the mean ± 95% c.i. for sequential
groups of 20 trials. Illustrations at the top indicate the conditions for re-
ceiving ICMS in each trial block. ICMS was delivered when the red heading
vector was within the green circular sector whose area was defined by σ. (B)
Each catch trial (no-stim) had a platform location matched to a stimulation
trial. (C) Results of the paired-trial analysis. Statistical tests were one-tailed.
Catch trials occurred during the postlearning trial blocks indicated in A.
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as when the platform was visible. Similar results were obtained
with high-acuity ICMS feedback delivered to a different sensory
area, the auditory cortex, in another rat (SI Appendix, Fig. S2).
Decreasing the tuning width further to σ = 5°, however,

revealed an upper acuity limit. Performance became immediately
worse compared with σ = 15°, and there was no improvement for
up to 100 trials (Fig. 2A). This effect was not a trivial result of
methodological limitations, such as undersampling the swim path.
The video frame rate was sufficient to reliably detect each time the
σ = 5° ICMS conditions were met (Movie S3). Rather, the upper
acuity limit was likely a result of perceptual limitations. Behavioral
sensitivity to ICMS is known to be a function of stimulus duration,
with shorter stimulus trains yielding higher detection thresholds
(24, 25). Indeed, stimulus duration was approximately exponentially
distributed with a mean (±SD) of 147 ± 114 ms for σ = 5° and
417 ± 425 ms for σ = 15°. The fixed stimulus intensity was based on
behavioral thresholds for 500-ms trains, thus explaining the de-
graded performance in σ = 5°. The existence of an acuity limit
highlights an encoding tradeoff (acuity vs. detectability) in active
sensing tasks, such as ours, in which the animal’s movement de-
termines ICMS duration.
To control for any performance improvements unrelated to the

ICMS feedback (e.g., experience-dependent changes in general
search strategy), we performed an additional analysis. After a
learning criterion was met (Methods), occasional catch trials were
introduced in which no ICMS was delivered. Platform locations on
these catch trials were matched to a subset of stimulation trials,
permitting a paired statistical analysis of swim path length with
and without ICMS feedback (Fig. 2B). Although swim path length
could be falsely reduced by chance encounters with the platform,
the chance probability was the same for both stimulation and catch
trials, as the trials were otherwise identical. Confirming use of the
ICMS, the mean path length was significantly longer on catch
trials (Fig. 2C). Additional examples of postlearning performance
with high-acuity feedback, including navigating around obstacles
placed in the tank, are shown in Movies S4, S5, and S6.

Learning with Low-Acuity ICMS Feedback. Next, we explored the
lower limit of the acuity with which goal direction could be
encoded. Specifically, we used σ = 90°, which was the lowest-
acuity feedback in our paradigm, since the rats could learn to use
the more specific information provided by the supplementary σ
and μ angles for σ > 90°. For example, encoding functions with
parameters μ = 0°, σ = 135°, and μ = 180°, σ = 45° would both
specify the goal direction to within 45° and were thus equivalent
in terms of their information content.
Rat Ge failed to show much improvement using σ = 90° for 85

trials (Fig. 2A). However, we found that when given more trials,
3 other rats learned the task. For example, rat Sa showed a
performance improvement over the course of 123 trials (Fig.
3A), although the final performance (last 30 trials) was worse
than the baseline visual cue performance (t[46] = −2.11; P =
0.040). Interestingly, when the directionality of the ICMS was
reversed such that stimulation occurred when moving away from
the platform (μ = 180°), rat Sa reached a performance pla-
teau statistically indistinguishable from the visual cue baseline
(t[46] = −0.96; P = 0.345). First, this result demonstrates reversal
learning of our encoding paradigm, whereby after first learning
one ICMS contingency, the animal had the capacity to remap the
appropriate behavioral response to a new ICMS contingency
(26). Second, it shows that even when ICMS encoded the plat-
form direction with very low acuity, the rat learned to locate the
platform with the same proficiency as with a visual cue. The same
was true of 2 other rats (Sn and Ro), as summarized by the
paired statistical analysis comparing trials with and without
ICMS after learning (Fig. 3B). Similar results were obtained with
the low-acuity paradigm in a simpler task in which the platform
could be in 1 of only 4 known locations. In this 4-location task,
we found that the rats prioritized use of the stimulation over the
relatively simple alternative of visiting each location in turn (SI
Appendix, Fig. S3).

ICMS Transitions Provided Optimal Goal Localization Signal. The
preceding performance analyses indicate that the rats learned to
use the ICMS feedback in both high- and low-acuity conditions.
However, they do not reveal how the feedback was used or
whether behavioral strategies varied between artificial sensory
conditions, which is a key requirement of active sensing (14).
Theoretically, the ambiguity in the ICMS feedback could be
largely resolved by focusing on the stimulation transitions. For
example, for the encoding parameters σ = 90° and μ = 180°,
at the ICMS off-to-on transition, the platform is on the line
oriented exactly 90° from the current heading (Fig. 4A).
More generally, for any σ and μ, the platform direction is
φ=

�
�argðei½σ−μ�Þ�� from the instantaneous heading at the ICMS

transition. The only remaining ambiguity, due to our encoding of
the unsigned goal-direction angle, is whether to turn to the left
or right by φ at the transition. Note that the ICMS transition was
the maximum slope, or edge, of the encoding function. Previous
work has shown that use of an edge of a sensory signal (e.g., odor
trail) is optimal for spatial localization (27).

Search Strategies Were Dependent on Encoding Parameters.Noise in
the rats’ estimate of their heading and delays in perception of the
ICMS transition would hamper use of the optimal strategy de-
scribed here. Their swimming momentum would further prevent
the immediate turn required for its execution. Improved knowl-
edge of the platform direction might be attained iteratively by
accumulating evidence over multiple ICMS transitions. Further-
more, conserving momentum by a looping swim path at the
transition might aid execution. We observed both of these be-
haviors in the actual swim paths. For example, in the trial shown in
Fig. 4B (σ = 90°, μ = 180°), a first ICMS train occurred during the
initial circular swim path in the middle of the tank. The lines at
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Fig. 3. Learning with low-acuity ICMS feedback. (A) Task performance
(mean ± 95% c.i. for sequential groups of 25 trials) of rat Sa with a local
visual cue (dark blue), with stimulation when swimming toward the plat-
form (yellow), and with stimulation when swimming away from the plat-
form (pink). Illustrations at the top indicate the conditions for receiving
neural stimulation in each trial block. (B) Paired statistical analysis of the
performance with and without ICMS (σ = 90°, μ = 180°) for rat Sa and 2
other rats.
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angle φ= 90° from the instantaneous swim path at the ICMS off-
to-on and on-to-off points are shown in blue. With this initial in-
formation, the rat then swam generally toward the platform, but
with a clear deviation from the true direction. Then, a second
ICMS train occurred, prompting a corrective loop leading closer
to the platform. Finally, the rat overshoots, receives a third ICMS
train, and makes a final turn to reach the platform. A similar
strategy was observed across all the rats that learned the σ = 90°
condition (e.g., Movies S7 and S8). In particular, the rats swam in
a spiral or circular pattern in the middle of the tank to efficiently
gather initial ICMS feedback, followed by a swim toward the
platform with a tight corrective loop if ICMS was encountered
again (Fig. 4C).
In contrast, in the σ = 45° and 15° conditions, the rats adopted

a very different strategy. The swim paths almost entirely lacked
any tight spiraling or looping. Instead, often a zigzagging strategy

was used in which side-to-side movements generated ICMS
transitions, presumably to better define the goal direction (Fig.
4D). A similar strategy has been observed in rats following a wide
odor trail (28). To quantify the difference in looping versus
zigzagging swim trajectories, we computed the total curvature of
the swim path (i.e., the sum of the rat’s yaw rotation between
each pair of consecutive frames) for each postlearning trial. The
mean total curvature was significantly higher in the 4 rats that
learned to use low-acuity feedback than in the 3 rats that learned
to use high-acuity feedback (Fig. 4E; t[5] = 5.74; P = 0.0022).
Importantly, there was no mean performance difference, quan-
tified by path length ratio, between these same groups (t[5] =
0.002; P = 0.9984). Thus, with equivalent performance, the
characteristics of the encoded sensory information caused dis-
tinct motor strategies to be learned.

Search Strategies Minimized Effort Needed to Identify ICMS
Transitions. Finally, we asked why these different strategies might
be appropriate for the encoded directional sense. As just de-
scribed, the encoding function edges, or ICMS transitions, pro-
vided the most information for goal localization. From the point of
view of mechanics, looping and zigzagging might minimize the
torque needed to rotate in the water to find the edges of wide and
narrow encoding functions, respectively. To explore this hypoth-
esis, we considered a simple model of yaw rotation dynamics:
τ= Id2θ=dt2 + bdθ=dt, where τðtÞ was the control torque, θðtÞ was
the heading (goal-direction) angle, I was the yaw axis moment of
inertia, and b was the coefficient of frictional resistance (or drag)
in water. Using Pontryagin’s minimum principle, we derived op-
timal solutions to control the heading trajectory from an initial
condition of θ(0) = 0°, to θ(t1) = σ (first edge), and then to
θ(T) = −σ or 2π − σ (second edge, zigzagging or looping; SI
Appendix). We also left as a free parameter the angular speed, ρ,
at t = t1 and t = T. The optimal time of first edge interception, t1*,
optimal heading, θ*(t), and optimal control torque, τ*(t), were
determined separately for the zigzagging and looping terminal
constraints. We then compared the total effort (i.e., integrated
squared torque) used by zigzagging and looping to determine
which strategy was optimal over a range of model parameters (SI
Appendix).
Two examples are shown in Fig. 5A. Using estimates of I and b

based on the rats’ body morphology, we found that it was more
efficient to zigzag than to loop when σ = 45°, in agreement with
the rats’ learned behavior (Fig. 5 A, Left). For the same pa-
rameters, when the encoding function was widened to σ = 75°, it
was optimal to loop rather than zigzag (Fig. 5 A, Right). In
general, the optimal strategy for a given σ was dependent on the
ratio b=I and ρ (Fig. 5B). Over the range of parameters tested, it
was always optimal to loop at σ = 90°. For σ < 90°, zigzagging
became optimal at slower angular speeds or if drag relative to
inertia became large. At σ < 50°, it was always optimal to zigzag
(Fig. 5B). Thus, this simple mathematical model and hypothe-
sized cost function produced results that were in general agree-
ment with the observed search strategies used by the rats.
Furthermore, the model predicts that we should observe looping
behaviors at 50° < σ < 90°, provided the angular speeds used by
the rats are sufficiently high.

Discussion
The majority of sensory BMI studies have focused on the detec-
tion and discrimination of ICMS in the absence of information-
seeking movement (i.e., passive sensing) (11, 24, 25, 29). The
relatively few active sensing BMI studies to date have used
searching tasks, where the goal is recognizable (e.g., by external
reward), but its location is found only through interpretation of
ICMS feedback or by random search. In these searching tasks, 2
types of feedback have been tested: goal contact and goal di-
rection. In the contact paradigm, ICMS is delivered when a nat-
ural or neuroprosthetic effector spatially overlaps the goal (30–
32). This feedback is analogous to tactile signals arising from
contact with an object. Therefore, the paradigm is informative to
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an artificial sense of touch for neuroprostheses. However, for the
study of active sensing, the paradigm is limited, since the motor
strategy to search for the goal is independent of ICMS until the
point at which it is encountered. In the direction paradigm, ICMS
provides feedback about the goal direction, which is noncontact
spatial information analogous to natural vision or audition rather
than touch, and which is naturally encoded in entorhinal-hippo-
campal circuits (33, 34). This paradigm affords the subject an
opportunity to tailor their motor behavior to the ICMS feedback
properties to efficiently search for the goal. Prior work has shown
that rats can learn to discriminate between 4 potential goal loca-
tions on the basis of ICMS delivered when their heading coincides
with the direction of the true goal location (35). Several variations
on this result were subsequently reported (26, 36, 37).
Our sensory BMI experiment also used a searching task with

goal direction feedback. However, several features distinguish our
study from prior ones. First, we parametrically varied the encoding
function to directly explore whether and how searching strategies
varied with feedback properties. Specifically, we tested the full
range of the parameter specifying acuity of the artificial sense.
Performance and goal direction acuity had a U-shaped relation-
ship, which we interpreted as resulting from a decrease in ICMS
detectability at higher acuities. This tradeoff might be circum-
vented by mimicking natural sensory adaptation (38), with in-
tensity starting high enough for short bouts of ICMS to be
detected and gradually decreasing such that longer episodes re-
main perceivable while minimizing charge injection. Importantly,
we also observed different learned active sensing strategies:
looping for low-acuity feedback and zigzagging for high-acuity
feedback. Prior studies investigated reversal learning by chang-
ing the encoding function, but only at the level of performance
(26, 36). Second, we identified an optimal strategy as a function of
the encoding parameters, which involved precise turning at ICMS
transitions. The swim paths indicated that ICMS transitions were
indeed exploited. Our model indicated that the learned strategies
were optimal for encountering these transitions. Third, we used a
continuous-location searching task, implemented in a water maze
to provide intrinsic goal-seeking motivation (23). The task was
significantly more challenging, requiring many more trials to learn,
than prior discrete-location tasks. Impressively, the rats learned to
use ICMS to locate the randomly located hidden platform with the
same proficiency as natural vision.
Together, these features establish sensory BMI as a platform

for studying learning of active sensing strategies. Much of the
active sensing literature is devoted to elucidating the elegant

solutions, refined through evolution, that model organisms use to
enhance sensory information through movement (39, 40). Solu-
tions are often hard-coded in the body plan and movement abil-
ities of the animal, distribution of sensory receptors, and tuning of
primary sensory neurons. However, changes in neural response
properties, neural functional connectivity, and attentional sam-
pling could allow active sensing routines to be shaped through
experience (41). An important line of inquiry is to investigate how
active sensing strategies are dynamically regulated or adapted to
changes in an organism’s sensorimotor apparatus or ecological
niche (13). Sensory BMI, compared with virtual reality, is more
compatible with studying learning during free behavior. A po-
tential disadvantage is the nonethological nature of the stimuli.
Thus, the sensory BMI method is particularly well suited to
studying active sensing adaptations to pathological or unnatural
sensorimotor contingencies, such as occurs with neurological in-
jury and neuroprosthetic treatments. As exemplified by our work,
such studies can reveal the animal’s learning capacity in this do-
main, the explicit relationship between sensor properties and
sensing strategies, and how the strategies compare to known
optimal alternatives.

Methods
Surgery. The following procedures were approved by the University of
Pennsylvania Institutional Animal Care and Use Committee. Sprague-Dawley
rats (n = 12; male; initial weight 250–275 g) were purchased from Charles
River Laboratories. Before surgery, the rats were habituated to handling for
approximately 1 wk. Then, an aseptic surgical procedure was performed to
implant a concentric bipolar stimulating electrode (MS308, Plastics One),
with 150-μm inner electrode diameter and 1-mm interelectrode distance,
into a target cortical area. The rats were given preemptive analgesia
(buprenorphine SR, 1.2 mg/kg) and anesthetized with an i.p. injection of
ketamine (60 mg/kg) and dexmedetomidine (0.25 mg/kg). Once placed in a
stereotaxic frame, a 2-mm-diameter craniectomy was performed and the
electrode was slowly advanced into either S1 or A1 (coordinates in SI Ap-
pendix, Fig. S4). Dental acrylic was applied to form a permanent headcap
around the electrode and skull screws. The rats were given 7 d after surgery
to recover before training resumed.

Training. After recovery from surgery, the rats were reintroduced to handling
and habituated to wearing a harness to which a wireless neural stimulator
was attached (Fig. 1A). Then, they performed a visually guided search task
for 3 to 7 daily sessions in a Morris water maze (23). The Morris water maze
consisted of a 2-m circular metal tank with a black interior, filled with
water of ambient temperature (18–22 °C) to a depth of about 25 cm. The
water was made opaque with black tempura paint to hide a 10-cm circular
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Fig. 5. Modeling optimal search strategies. (A) Optimal heading trajectory, θ*(t), to identify edges of an encoding function with width of σ = 45° (Left) or σ =
75° (Right), using a zigzagging strategy (gray) and a looping strategy (red). Model parameters were I = 6.5 × 10−4 N·m·s2, b = 1.5 × 10−5 N·m·s, ρ = 200°/s, and
T = 0.8 s. The optimal time to first edge (t1*) and integrated squared torque (effort) are indicated for each strategy. Illustrations of the model rat’s heading
using the minimum effort strategy are indicated at the top for 4 points along the trajectory. (B) Model predictions of the optimal strategy over a range of
parameters and T = 0.7 s.
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acrylic platform submerged by 2 cm. On the visually guided task, a white
ruler protruding 15 cm above the water was attached to the platform to
provide a local visual cue of its location. On each trial, the platform was
moved to a random location. Each trial began by placing the rat within a
body length of the center of the tank (13.7 ± 2.3 cm from center on av-
erage across all trials and rats) and at a relatively consistent orientation
(27.8° SD). The rat then swam to find the platform to escape the maze.
Training concluded when the rat consistently appeared to be actively
looking for the local visual cue and reaching the platform without anxious
or inattentive behaviors such as clinging to or following the walls of the
tank (thigmotaxis). Performance on the final 20–30 trials of the visually
guided task was used to provide a baseline to which learning on the
stimulation-based task was compared. All animals that completed training
as described were included in the experiment (n = 7). Four rats were ex-
cluded due to repeated signs of stress (e.g., excess vocalization) and
thigmotaxis during training that did not ameliorate over time. Per our
protocol, these animals were removed from the study. An additional rat
was excluded after its chronic implant detached from the head.

Experiment. After training, the local visual cue was replaced with ICMS that
encoded the rats’ egocentric bearing to the platform. The objective of the
experiment was to see whether and how the rats learned to use this
artificially encoded information. The encoding paradigm required a
closed-loop system to update ICMS parameters in real-time, based on the
swim path (Fig. 1B). The custom closed-loop system was described pre-
viously (22). Briefly, a video camera with a 1080p image sensor was placed
above the center of the Morris water maze to monitor the rat’s swim path
at 12 frames/s. A computer program (MATLAB) acquired each video
frame, identified the rat’s heading relative to the platform, and com-
puted ICMS parameters based on the encoding function specified by the
experimenter (Fig. 1C). The rat’s heading was determined by identifying,
on each frame, a red landmark on the wearable stimulator corresponding
to the position of the rat’s upper back, and computing the orientation of
the vector between the identified positions on every pair of consecutive

frames. On each video frame, the updated ICMS parameters were sent
wirelessly to the neural stimulator, using a 2.4-GHz transceiver.

The wearable stimulator (20 × 25 × 15mm, 15 g) delivered bipolar, biphasic,
current-controlled pulses with programmable pulse width, pulse amplitude,
and pulse frequency. For these experiments, pulse width and frequency were
fixed at 0.2 ms/phase and 100 Hz, respectively. Pulse amplitude, determined at
the beginning of each session, was set at the threshold for a behavioral re-
sponse to 500-ms pulse trains. Current amplitude was increased until the ex-
perimenter detected a clear response (e.g., turning the head contralaterally or
twitching or scratching the whisker pad) to 2 consecutive pulse trains (42). The
range of pulse amplitudes used was 15 to 75 μA. The stimulator was battery
powered, encased in waterproof rubber latex, and attached to the harness via
cable-tie fasteners. The stimulator transmitted back to the acquisition com-
puter on each frame the measured voltage on the electrodes. This allowed us
to track the electrode impedance throughout each trial, and to exclude trials
in which large impedance changes occurred, typically due to water infiltration
or loosening of the electrode connector. These events occurred on less than
3% of trials.

Experiments consisted of a series of multisession trial blocks in which
different encoding functions were tested. Testing conditions for each rat are
listed in SI Appendix, Table S1. To assess learning, the effect size (Hedges’ g
statistic) was computed between the path length ratio distributions of the
local visual cue trials and ICMS trials in nonoverlapping 20 trial blocks. Two
consecutive ICMS trial blocks with a jgj < 0.5 was used as the learning cri-
terion. Catch trials, in which no ICMS was delivered, were randomly in-
terleaved with ICMS trials in the postlearning periods to further assess
reliance on the ICMS feedback. Through the use of catch trials, each rat
served as its own control. At the conclusion of the study, the electrodes were
localized to the target cortical areas using histology (SI Appendix).
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